Assessment of a multi-frequency Slingram EMI for archeological prospection

François-Xavier SIMON (GeoSat ReSeArch), Julien THIESSON (UMR Metis), Alain TABBAGH (UMR Metis), Apostolos SARRIS (GeoSat ReSeArch)

CAA 2014, Concepts, Methods, Tools
Paris, 22-25 April 2014
Outlines

- Multi-frequency EMI measurement
- GEM2
- Properties sensitivity
- Depth of investigation (1D and 3D)
- Experimental data:
 - Hungary (Magor Vezto)
 - Greece - Thessaly (Almiriotiki)
Interest of multi-frequency EM

- Electro-magnetic sounding for electrical conductivity

In archaeology:
- Two commercial instruments
 EMProfiler (GSSI Ltd.)
 GEM2 (Geophex Ltd.)

- Multi-frequency measurement of the magnetic susceptibility

\[
\frac{2}{\pi} \ K_q = - \frac{\partial K_{pl}(\omega)}{\partial (\ln \omega)}
\]

Sample measurement (FDEM, TDEM), Field Measurement (TDEM)

Figure 3. Frequency variations of the in-phase susceptibility (circle) and the quadrature susceptibility (triangles) for sample DC33.

Dabas and Skinner 1993
GEM2 (Geophex Ltd.)

Frequency: 300 – 90 kHz

Coil spacing: 1.66 m

Orientation: Coplanar

Specificity :
« Bucking coil »
Two reception coils – 1.66 m and 1.035 m
For the compensation of the primary field

- Increase the stability
- Minimize the instrumental drift

Does this specificity affect the response of the instrument?
Geometries

Complex signal: in phase (Ph) and quadrature out of phase (Qu)
Low Induction Number

- Meter coils spacing, small coils
- 100 Hz to 100 kHz

Complex signal

- Depth of investigation depending on the geometries (and not on the frequencies)
- In phase (Ph) link to the magnetic susceptibility
- Qu link to the electrical conductivity

Reminder: Magnetic susceptibility has a complex form
How this one affect both parts of the complex signal?

Simulation of the behaviours for different frequencies
Theoretical response (Qu) to conductivity for different frequencies

Dynamic range of values induced by the frequency

Greatest dynamic range for the highest frequency
Theoritical responses (Ph) to susceptibility for different frequencies

Offset link with electrical conductivity

Similar slopes for the different frequencies
Theoretical response (Qu) to magnetic viscosity for different frequencies

Slope independent with the frequency (offset induced by the conductivity)

Different behaviours with the frequency allows the separation of the different properties
1D geometry for assessing depth of investigation

- Shifting of a thin resistive and magnetic layers (from topsoil until 5 m depth)
- Use of two frequencies (5010 Hz and 40 050 Hz)
- HCP / VCP

<table>
<thead>
<tr>
<th>Resistance (ohm.m)</th>
<th>Conductivity (S.I.)</th>
<th>Permeability (S.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10e-5</td>
<td>0.6e-5</td>
</tr>
<tr>
<td>200</td>
<td>100e-5</td>
<td>6e-5</td>
</tr>
<tr>
<td>20</td>
<td>10e-5</td>
<td>0.6e-5</td>
</tr>
</tbody>
</table>
Depth of investigation

HCP – Qu

- Same sensitivity
- Different range of values (dependence on frequency)
Depth of investigation

HCP – Ph

- Same sensitivity – Negative anomalies for a magnetic anomalies
- Different offset of values (dependence of the frequencies)
Depth of investigation

VCP – Qu

- Same sensitivity
- Different range of values (dependence of the frequencies)
Depth of investigation

VCP - Ph

- Same sensitivity – Positive anomalies for a magnetic anomalies
- Different offset of values (dependence of the frequencies)
3D geometry for assessing depth of investigation

- 2*2*1 m block in an homogeneous media (two depths: 1 and 2 m)

- Results in conductivity (Qu) and magnetic susceptibility (Ph)
Apparent resistivity (Qu) for a depth of 1 m

- Complex signature of a simple block
- Offset between the two frequencies (effect of the magnetic viscosity)
- Same dynamic range of values (induce by the same depth of investigation)
Apparent resistivity (Qu) for a depth of 2 m

- Complex signature of a simple block
- Offset between the two frequencies (effect of the magnetic viscosity)
- Same dynamic range of values (induced by the same depth of investigation)
Magnetic susceptibility (Ph) for a depth of 1 m

- Similar shape
- Complex shape of the anomaly
- Great offset induce by the frequency dependency of the susceptibility
Magnetic susceptibility (Ph) for a depth of 2 m

- Same shape
- Simple shape of the anomaly
- Great offset induce by the dependency of the susceptibility
First case study: Hungary – Magor Veszto

Dataset with a classical procedure:

- 5 frequencies
- raised to a height of 1 meter
- 2 meter between each profile
Ph measurements for the different frequencies

- Great effect of the conductivity
- High noise for lowest frequencies
- Poor resolution
Measurement at 1m height of the signal (Qu) in HCP

- Small changes of the depth of investigation
- Different sensitivity with depth (less affected by surface disturbances)
Huge changes of the depth of investigation

Different sensitivity with depth (less affected by surface disturbances)

Measurement at 1m height of the signal (Ph) in HCP
Second case study:

A Magoules in Thessaly Plain Almiriotiki (Neolithic Tell)

Dataset with a new procedure:

- 5 frequencies
- raised to a height of 0.3 meter
- 1 meter between each profile
Quadrature part of the signal: Raw data

- Small changes with the frequency for the quadrature part of the signal
In-phase part of the signal: Raw data

- Highest frequency start to be affect by the conductivity
Correction procedure

Raw data

Offset correction / coefficient (digits/ppm) correction

Difference of two frequencies (only related with the conductivity)

Extraction of the conductivity and expression in physical properties (ppm to mS/m)

Simulation to the part of the conductivity on the real and imaginary part of EM signal

Subtraction of the simulation and the corrected data

Magnetic susceptibility

Magnetic viscosity
Conductivity

- Similar contrast between raw data and processed data (due to the high conductivity)
- The true values of the conductivity allows an accurate interpretation
Magnetic Susceptibility

- In-phase magnetic susceptibility increase with the frequency (unexpected by the theory)
- Very high values of susceptibility (???)

Figure 3. Frequency variations of the in-phase susceptibility (circle) and the quadrature susceptibility (triangles) for sample DC33.
Magnetic viscosity

- Constant values of quadrature magnetic susceptibility, as expected in the theory
- Poor resolution

Figure 3. Frequency variations of the in-phase susceptibility (circle) and the quadrature susceptibility (triangles) for sample DC33.
Results:

- Depth of investigation independent of the frequency (LIN assumption)
- Height of instrument: 0.3 m is better than 1 m
- Useful for the correction of the effect of the conductivity on the in-phase part of the signal
- Useful for the correction of the effect of the magnetic susceptibility on the quadrature part of the signal
- Measurement of both magnetic susceptibility and viscosity

Multi-frequential EM instrument is useful for archaeological prospection
Prospects:

- What happens for the highest frequency (especially close to 100 kHz)?
- What is the behaviour with these geometries (VCP-HCP)?
- Are the theory about magnetic susceptibility still relevant?

THANK YOU FOR YOUR ATTENTION!

This work was performed in the framework of the IGEAN ("INNOVATIVE GEOPHYSICAL APPROACHES FOR THE STUDY OF EARLY AGRICULTURAL VILLAGES OF NEOLITHIC THESSALY") project which is implemented under the "ARISTEIA" Action of the "OPERATIONAL PROGRAMME EDUCATION AND LIFELONG LEARNING" and is co-funded by the European Social Fund (ESF) and National Resources.