Opening a New Frontier in the Neolithic Settlement Patterns of Eastern Thessaly, Greece.

Laboratory of Geophysical – Satellite Remote Sensing and Archaeo-environment
Institute for Mediterranean Studies
Foundation for Research and Technology, Hellas (I.M.S.-F.O.R.T.H.)
Rethymno, Crete, Greece
&
Archaeological Ephorate of Karditsa & Archaeological Ephorate of Magnesia,
Greek Ministry of Culture.
Status of knowledge of the Neolithic Landscape in Thessaly

http://neolithicthessaly.ims.forth.gr/

Registration and mapping of Neolithic settlements, VHR/HS Space imagery & GIS spatial analyses for Regional site distribution patterns among ecological and topographic zones of Thessaly.

- GPS/Aerial documentation of 342 magoulas
- 181 sites (53% of the total) are established on alluvial deposits & 81 sites on fluvial deposit areas.
- These formations are of low altitude & are ideal for cultivation.
Habitation Patterns of the Neolithic Agricultural Villages in Eastern Thessaly (Greece) Through Remote Sensing Applications

This paper presents part of the results of a multi-year geophysical and remote sensing fieldwork campaign to study the physical landscape dynamics of Neolithic settlements within the coastal hinterlands of eastern Thessaly (Greece).

IGEAN (Innovative Geophysical Approaches for the Study of Early Agricultural Villages of Neolithic Thessaly) project, is implemented under the "ARISTEIA" Action of the "Operational Programme Education And Lifelong Learning" and is co-funded by the European Social Fund (ESF) and National Resources (2013-2015).

AIMS: Application of non-destructive, remote sensing techniques to explore multiple settlements & extract new archaeological data on an extensive scale, to analyze the broader characteristics of Neolithic habitation in Thessaly.

The project has been successful in documenting the diachronic development of Neolithic sites from core habitation mounds (≤ 1 hectare) to large, sprawling communities several hectares in size.
Methodologies – Multi-magnetometer Techniques

Sensorik & Systemtechnologie (SENSYS)
MX Compact system

8 multi-channel measurement system
Equipped with FGM600 fluxgate gradiometers separated by 0.25-0.5m & connected to a DGPS navigation system

Ideal for large-scale scanning

Bartington single sensor unit also in use in thick vegetation areas
Methodologies – Ground Penetrating Radar (GPR) & Electromagnetic Techniques

Penetration Depth ~2.5m

8 channels MALA MIRA GPR, 400 MHz antennas
Sampling 10 x 2.5 cm

Sensors & Software
Noggin Plus System with 250 MHz antennas
Sampling 50 x 2.5 cm

GEM2 - Geophex
CMD Mini explorer – GF Instruments

GEM2: HCP 2.5 m Conductivity / 1.7 m susceptibility
CMD: HCP 2 m Conductivity / 1 m susceptibility
Methodologies – Magnetic Susceptibility Measurements_ Soilscape

Coring and soil analysis
- Bartington MS2B
- Low & High Frequency susceptibility & Phosphate analysis

Methodologies – Aerial Photography

Quadrocopter DroidWorx CX4
- DJI navigation, viewpoint and failsafe
- Average altitude 100-200 m above surface
- Autonomy ~13-15min with camera load

Automatic georeferencing with AutoGR-SIFT
Manual Georeferencing

200m (good overlapping)

Production of georeferenced DTM (and pointcloud), orthophoto and georeferenced individual frames
<table>
<thead>
<tr>
<th>SITE</th>
<th>PERIOD</th>
<th>COVERAGE (in hectares)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAGNETICS</td>
<td>UAV</td>
</tr>
<tr>
<td>1 Agios Demetrios</td>
<td>EN, MN</td>
<td>0.39</td>
</tr>
<tr>
<td>2 Agios Nikolaos</td>
<td>LN</td>
<td>N/A</td>
</tr>
<tr>
<td>3 Almiriotiki</td>
<td>EN-LBA</td>
<td>8.38</td>
</tr>
<tr>
<td>4 Almiros2</td>
<td>EN-MN</td>
<td>6.63</td>
</tr>
<tr>
<td>5 Bakalis</td>
<td>FN-beyond</td>
<td>0.46</td>
</tr>
<tr>
<td>6 Belitsi</td>
<td>EN, MN</td>
<td>2.00</td>
</tr>
<tr>
<td>7 Dexameni</td>
<td>N, EBA</td>
<td>0.20</td>
</tr>
<tr>
<td>8 Eleuterochori</td>
<td>undefined</td>
<td>N/A</td>
</tr>
<tr>
<td>9 Kamara</td>
<td>MN</td>
<td>1.55</td>
</tr>
<tr>
<td>10 Karatsangliou</td>
<td>LN</td>
<td>2.94</td>
</tr>
<tr>
<td>11 Karatsantagli</td>
<td>EN</td>
<td>2.67</td>
</tr>
<tr>
<td>12 Kastro Kokkinas</td>
<td>LN, FN & historical</td>
<td>1.01</td>
</tr>
<tr>
<td>13 Nikonanou</td>
<td>MN-EBA & Byzantine</td>
<td>2.95</td>
</tr>
<tr>
<td>14 Perdika1</td>
<td>EN, MN, MBA</td>
<td>5.39</td>
</tr>
<tr>
<td>15 Perdika2</td>
<td>MN</td>
<td>3.89</td>
</tr>
<tr>
<td>16 Perivlepto Kastraki2</td>
<td>EN, MN</td>
<td>3.94</td>
</tr>
<tr>
<td>17 Rizomilos2</td>
<td>N, EBA</td>
<td>10.58</td>
</tr>
<tr>
<td>18 Vaitsi Mylos</td>
<td>EN- MBA</td>
<td>3.16</td>
</tr>
<tr>
<td>19 Velestino(3) Mati</td>
<td>EN-MN & EBA & historical</td>
<td>3.22</td>
</tr>
<tr>
<td>20 Velestino4 - Visviki</td>
<td>MN-LBA</td>
<td>5.91</td>
</tr>
<tr>
<td>21 Zerelia</td>
<td>EN-LBA & historical</td>
<td>4.87</td>
</tr>
</tbody>
</table>

SUM | **69.84** | **178.6** |
Selected Results

GeoSat ReSeArch
IMS-FORTH
Almiros 2 – Magnetics

Core habitation zone: 15-20 rectilinear structures with high magnetic values (burnt daub made structures). Enclosed by wall fortifications.

At least 2 circular ditches & multiple possible entrances

A few features outside the core habitation zone.
Magnetic susceptibility indicating different usage areas within the settlement?
Almiros 2 – EM Conductivity (HCP for 0-2.5 m depth)

High conductivity area to the south → possible evidence of flooding susceptibility ??
Magoula Rizomilos 2
(N – EBA)

Multiple concentric ditches with various breaks that represent entrances.

Enclosure walls at the center

Flooding marks

Another smaller pre-existing settlement to the east with each own system of ditches & enclosure walls
Magoula Almiriotiki – Magnetics

- Extensive settlement built around a core habitation zone on the highest topographic level.
- Structures on the top have high magnetic values (burnt daub made structures).
Magoula Almiriotiki – GPR (depth 0.7-0.8 m)
Magoula Almiriotiki – Details of Structures

- Low magnetic value probably indicates that the structure(s) has stone foundations

- Rectilinear form 38 m by 10 m.

- In GPR, the large “megaron” type structure appears to be formed from three separate structures built side by side.
Outside the core zone:
- 60+ rectilinear structures
- Structures with low magnetic values (stone built) have 2-3 rooms
- Extensive network of ditches (at times double) surround the settlement
Perdika 1 (Dautza)
Extensive settlement (>200x100m) that greatly expands beyond a core habitation zone on the highest elevation.
Perdika 1
Early Neolithic – Middle Bronze Age

- 13 burnt daub structures within the core zone and “empty” area to the East.

- 50+ rectilinear stone-built structures

- The majority of structures have high magnetic values (burnt daub structures), but others have low magnetic values (stone) with 2-3 rooms (similar to Almyriotiki). 3 phases?

- Ditches and or walls preserved on the northern side of the settlement
Perdika 2

- Extensive network of ditches built on a natural hilltop
- A sequence of openings that gave access into the settlement
- Little evidence for individual structures (some have high magnetic values)
- Large rectilinear structures with low magnetic value (stone foundations?) were identified with GPR
Concluding Remarks

Successful Employment of Geophysical and Satellite remote sensing techniques – Importance of using an arsenal of various approaches (manifold geophysics)
What can we get out of these results?
Conceptualize a landscape of variation: Similar and divergent characteristics of settlements in planning and structural materials

- Dimension of settlements and structures
- Internal organization of the structures, clusters of structures
- burnt and unburnt structures / mudbrick & stone structures
- open/unbuilt spaces, pits, a.o.
Neolithic Ditches

- Existence of enclosures: internal fortifications and external ditches
- Sustaining terracing walls at more abrupt slopes and hilly terrains
- Corridors and entrances
Flooding Simulation

Existence of ditches in terms to the surrounding geomorphologic features (e.g. proximity to palaeochannels and to prone flood areas).

Persistence of habitation even in flood prone areas and the existence of multiple enclosures and ditches around these settlements may suggest counter measures against periodic flooding events.
Implications regarding the sustainable population, the study the spatial context and organization – intra site, local and regional level, the chronological continuation of habitation, persistency in occupation, etc. ➔ still able to make some reconstruction of Neolithic landscape and organization of the settlements.
Opening a New Frontier in the Neolithic Settlement Patterns of Eastern Thessaly, Greece.

GeoSat ReSeArch Lab, Institute for Mediterranean Studies
Foundation for Research and Technology, Hellas (I.M.S.-F.O.R.T.H.)
&
Archaeological Ephorate of Karditsa & Archaeological Ephorate of Magnesia,
Greek Ministry of Culture.